Mobility and Emissions Modeling of Automated Vehicles

Andrew Eilbert (SGT), Stephen Bransfield, George Noel, Brian O'Donnell (SGT), and Scott Smith DOE SMART Mobility Workshop, Oak Ridge National Laboratory

November 17, 2016

Advancing transportation innovation for the public good

U.S. Department of Transportation Office of the Secretary of Transportation John A. Volpe National Transportation Systems Center

- US DOT Automated Vehicle Benefits Framework
- □ Traffic Microsimulation Modeling
- Energy and Emissions Inventory Modeling
- AV Scenario Results
- Effects on Travel Behavior
- Next Steps

Framework for Automated Vehicle Benefits

Framework Development

- Standardized approach: facilitates comparability among the research community
- Existence of recognized and accepted tools/models (i.e. US EPA MOVES), assists in the development of a framework
- There is no gold standard microsimulation tool; they all have fundamental differences. Therefore, we must do the following:
 - Define/set baseline assumptions (acceptable headway, min/max acceleration, etc.)
 - Standardize simulation inputs and result formats (run time, time per step, units, etc.)
 - Identify common networks (the design of the road/network is an important factor)
- Performance validation and testing

Modeling Approach

Vehicle Automation Scenarios

- Modeled passenger cars on two-mile segment of two-lane highway
- □ Ran four different microsimulation scenarios in VISSIM:
 - 1) 100% human driving at 2400 vehicles/lane/hour
 - 2) 100% driving with coordinated adaptive cruise control (CACC) at 2400 v/l/h
 - 3) 50% CACC & 50% human driving at 2400 v/l/h
 - 4) 100% CACC driving at 4000 v/l/h
- MOVES project-level emissions calculated for each scenario and normalized for activity (grams/mile)

Defining CACC

- Modified coordinated adaptive cruise control (CACC) model from Turner-Fairbank Highway Research Center (DOT)
 - No managed lane
 - No platoon formation logic
- □ Switched car-following logic based on leading vehicle:
 - If a CACC-enabled car is following another automated enabled vehicle, it will follow in CACC mode (i.e. shortened headway)
 - If the vehicle in front of a CACC-enabled car is not CACC enabled, it will operate according the ACC

Typical Mobility Results Report

- Report the average results over 10-15 runs
- But how are the vehicles behaving?

Weidemann Car Following

- □ A closer following headway
- □ The reduction of oscillations in driver car following behavior

- 100% CACC automated can significantly increase lane capacity
- Emission results will be highly sensitive to V/C ratio
- Average speed is too high level to describe results
- Work in this area will focus on identifying a standardized set of visualizations

MOVES Operating Modes

- Vehicle-specific power (VSP) and emissions are well correlated
- VSP is derived from instantaneous speed and acceleration along with other constants such as vehicle mass and aerodynamic drag
 - Able to handle modal data at 1 Hz or higher frequencies
- MOVES operating modes assigned according to VSP and speed bins
 - Separate op modes for braking and idling
- Operating mode distributions by time spent in mode can be developed from GPS or microsimulation data
 - MOVES can model emissions of VISSIM scenarios at project scale

	-	-					
		Speed Class (mph)					
		1-25	25-50	50 +			
	30 +	16	30	40			
	27-30						
VSP Class (kW/tonne)	24-27		29	39			
	21-24		28	38			
	18-21						
	15-18			37			
	12-15		27				
	9-12	15	25				
	6-9	14	24	35			
	3-6	13	23				
	0-3	12	22	33			
	< 0	11	21				

Operating Modes for Running Emissions

Beardsley (2011), MOVES Workshop

Vehicle-Specific Power (VSP)

$$P_{V,t} = \frac{Av_t + Bv_t^2 + Cv_t^3 + mv_t a_t}{m}$$
 Equation 1-2

In this form, VSP (Pv,t, kW/Mg) is estimated in terms of vehicles':

- speed at time t (vt, m/sec),
- acceleration a_t, defined as v_t v_{t-1}, (m/sec²),
- mass m (Mg) (usually referred to as "weight,"),
- track-road load coefficients A, B and C, representing rolling resistance, rotational resistance and aerodynamic drag, in units of kW-sec/m, kW-sec²/m² and kW-sec³/m³, respectively.³

Corresponding Drive Cycle and Operating Mode Distribution

□ Example: bus driving within a city

Urban Dynamometer Driving Schedule (UDDS)

Eilbert (2013), CRC Real-World Emissions Workshop

Human vs. CACC Operating Mode Distributions

Percent Reductions in Emissions per Vehicle from 100% Human Driving

-100%	Total Hydrocarb ons (THC)	Carbon Monoxide (CO)	Nitrogen Oxides (NOx)	Methane (CH4)	Volatile Organic Compoun ds (VOC)	Particulat e Matter < 2.5µm (PM2.5)	Brakewea r (PM2.5)	Tirewear (PM2.5)	Energy/Ca rbon Dioxide (CO2)
100% Human - 2400 vlh	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
100% CACC - 2400 vlh	-41.9%	-50.0%	-22.9%	-55.0%	-39.5%	-21.7%	-88.8%	-3.0%	-6.4%
50% Human/50% CACC - 2400 vlh	-22.3%	-31.7%	-13.0%	-28.5%	-21.2%	-21.1%	-41.8%	-1.7%	-4.7%
100% CACC - 4000 vlh	-45.6%	-58.7%	-27.2%	-59.6%	-43.0%	-29.8%	-84.4%	1.7%	-8.3%

Conclusions

Intuitive results

With the same traffic volume, emissions are least for the 100% CACC scenario and are most for the 100% human driving scenario

□ Why?

- Emission rates (g/mi) are less for CACC than human driving when normalized for activity, but absolute emissions may not be less
- Human driving shows more braking and changes in speed and VSP than CACC
- A high percentage of CACC driving falls into operating mode 35 with speeds greater than 50 mph and moderate VSP

Potential Trade-offs

- In absolute terms, the inventories for NOx, PM, and energy would increase in the high-volume 100% CACC scenario
- Thought experiment: add the following number of automated vehicles for comparable results as baseline human driving:

	NOx	PM2.5	Energy
Human Baseline (vehicles/hr)		4976	
AVs to Add (vehicles/hr)	1711	1833	345

- Uses MOVES default fleet composition in 2020
- Will induced demand for automated vehicles negate any emission and energy benefits?

AV Effects on Travel Behavior

Next Steps

- Scale up simulations
 - Expand microsimulations to multiple links and/or road networks
- Establish modeling best practices
 - Input standardization, model fidelity, reported results
- Develop common automation scenarios
 - Use best practices to share methodology and data
- Continue discussions with DOE
 - Open to future collaboration to evaluate potential AV benefits

For More Information

http://www.dot.gov/

Kevin Dopart US DOT / ITS JPO Kevin.Dopart@dot.gov

Scott Smith US DOT / Volpe Center Scott.Smith@dot.gov

Services, alerts, frequently requested information and more for citizens. **Resources for Individuals**

Services and information for

businesses, institutions and organizations. **Resources for Partners**

Resources for Government

CONNECT

Sponsorship through US DOT Intelligent Transportation Systems Joint Program Office (ITS JPO)

