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Outline

 US DOT Automated Vehicle Benefits Framework
 Traffic Microsimulation Modeling
 Energy and Emissions Inventory Modeling
 AV Scenario Results
 Effects on Travel Behavior
 Next Steps
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Framework for Automated Vehicle Benefits

 “Big picture” of 
automated vehicle 
impacts

 Short-term direct 
impacts

 Longer-term 
indirect impacts
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Framework Development
 Standardized approach: facilitates comparability among the research 

community
 Existence of recognized and accepted tools/models (i.e. US EPA 

MOVES), assists in the development of a framework
 There is no gold standard microsimulation tool; they all have 

fundamental differences. Therefore, we must do the following: 
 Define/set baseline assumptions (acceptable headway, min/max acceleration, 

etc.) 
 Standardize simulation inputs and result formats (run time, time per step, 

units, etc.)
 Identify common networks (the design of the road/network is an important 

factor)

 Performance validation and testing
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Modeling Approach 
• Process VISSIM output to create operating mode distributions
• Properly apply VISSIM modeled roadway network in MOVES 
• Run MOVES model and analyze results
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Vehicle Automation Scenarios

 Modeled passenger cars on two-mile segment of two-lane 
highway

 Ran four different microsimulation scenarios in VISSIM:
1) 100% human driving at 2400 vehicles/lane/hour
2) 100% driving with coordinated adaptive cruise control (CACC) at 2400 v/l/h
3) 50% CACC & 50% human driving at 2400 v/l/h
4) 100% CACC driving at 4000 v/l/h

 MOVES project-level emissions calculated for each scenario 
and normalized for activity (grams/mile)
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Defining CACC

 Modified coordinated adaptive cruise control (CACC) model 
from Turner-Fairbank Highway Research Center (DOT)
 No managed lane
 No platoon formation logic

 Switched car-following logic based on leading vehicle:
 If a CACC-enabled car is following another automated enabled vehicle, it will 

follow in CACC mode (i.e. shortened headway)
 If the vehicle in front of a CACC-enabled car is not CACC enabled, it will 

operate according the ACC
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Typical Mobility Results Report
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• Report the average results over 10-15 runs
• But how are the vehicles behaving?
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Weidemann Car Following
 A closer following headway
 The reduction of oscillations in driver car following behavior

Capri (2012), International Journal of Traffic and Transportation Engineering

http://article.sapub.org/10.5923.j.ijtte.20120103.03.html
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100% Human Drivers
2400 v/ln/hr

100% CACC Automated
2400 v/ln/hr

100% CACC Automated 
4000 v/ln/hr

V/C ratio ~1 V/C ratio ~0.6 V/C ratio ~1

• 100% CACC automated can significantly increase lane capacity
• Emission results will be highly sensitive to V/C ratio
• Average speed is too high level to describe results
• Work in this area will focus on identifying a standardized set of visualizations
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 Vehicle-specific power (VSP) and emissions 
are well correlated

 VSP is derived from instantaneous speed 
and acceleration along with other constants 
such as vehicle mass and aerodynamic drag
 Able to handle modal data at 1 Hz or higher 

frequencies

 MOVES operating modes assigned 
according to VSP and speed bins
 Separate op modes for braking and idling

 Operating mode distributions by time spent 
in mode can be developed from GPS or 
microsimulation data
 MOVES can model emissions of VISSIM scenarios at 

project scale

MOVES Operating Modes

Beardsley (2011), MOVES Workshop 

http://article.sapub.org/10.5923.j.ijtte.20120103.03.html
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Vehicle-Specific Power (VSP)

MOVES2014 LDV Emissions Technical Report

https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100NNVN.pdf
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Corresponding Drive Cycle and Operating Mode 
Distribution

 Example: bus driving within a city
 Urban Dynamometer Driving Schedule (UDDS)
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100% Human - 2400 vlh 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
100% CACC - 2400 vlh -41.9% -50.0% -22.9% -55.0% -39.5% -21.7% -88.8% -3.0% -6.4%
50% Human/50% CACC - 2400 vlh -22.3% -31.7% -13.0% -28.5% -21.2% -21.1% -41.8% -1.7% -4.7%
100% CACC - 4000 vlh -45.6% -58.7% -27.2% -59.6% -43.0% -29.8% -84.4% 1.7% -8.3%
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Conclusions
 Intuitive results

 With the same traffic volume, emissions are least for the 100% CACC 
scenario and are most for the 100% human driving scenario

 Why?
 Emission rates (g/mi) are less for CACC than human driving when 

normalized for activity, but absolute emissions may not be less
 Human driving shows more braking and changes in speed and VSP than 

CACC
 A high percentage of CACC driving falls into operating mode 35 with 

speeds greater than 50 mph and moderate VSP
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Potential Trade-offs

 In absolute terms, the inventories for NOx, PM, and energy 
would increase in the high-volume 100% CACC scenario

 Thought experiment: add the following number of automated 
vehicles for comparable results as baseline human driving: 

o Uses MOVES default fleet composition in 2020 

 Will induced demand for automated vehicles negate any 
emission and energy benefits?

NOx PM2.5 Energy
Human Baseline 

(vehicles/hr) ------------------------ 4976 ------------------------

AVs to Add 
(vehicles/hr) 1711 1833 345
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AV Effects on Travel Behavior
PopPopulation Synthesis
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Next Steps
 Scale up simulations

 Expand microsimulations to multiple links and/or road networks

 Establish modeling best practices
 Input standardization, model fidelity, reported results 

 Develop common automation scenarios
 Use best practices to share methodology and data 

 Continue discussions with DOE
 Open to future collaboration to evaluate potential AV benefits
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For More Information 
http://www.dot.gov/

Kevin Dopart
US DOT / ITS JPO
Kevin.Dopart@dot.gov

Scott Smith
US DOT / Volpe Center
Scott.Smith@dot.gov

Sponsorship through US DOT Intelligent Transportation Systems Joint Program Office (ITS JPO)

http://www.dot.gov/
mailto:Kevin.dopart@dot.gov
mailto:Kevin.dopart@dot.gov
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